
回顾第16次课和第六章

定点数运算：由ALU + 移位器实现各种定点运算
 移位运算：逻辑移位、算术移位、循环移位
 扩展运算：零扩展、符号扩展
 加减运算：补码加/减运算、原码加/减运算
 乘法运算：用加法和右移实现：补码乘法、原码乘法
 除法运算：用加/减法和左移实现：补码除法、原码除法

浮点数运算：由多个ALU + 移位器实现

定点数和浮点数计算的溢出（异常）判断

最终目标：定浮点运算部件、运算器、数据通路



第7章 指令系统

第1讲 概述与指令系统设计

第2讲 指令系统实例：RISC-V架构



计算机组成，ISA

Instruction Set Architecture

是否提供“乘法指令”：
ISA

如何实现乘法指令（用快速
乘法器还是用加法器+移位
器实现）、如何实现CPU（
单周期？流水线？etc）：
Organization

如何布线、用什么材料等：
Implementation

Implementaion，实现

Organization，组成
CPU MM I/O



回顾：RISC-V中整数的乘、除运算处理

 乘法指令: mul，mulh，mulhu，mulhsu
– mul rd, rs1, rs2：将低32位乘积存入结果寄存器rd
– mulh、mulhu：将两个乘数同时按带符号整数（mulh）、同时按

无符号整数（mulhu）相乘，高32位乘积存入rd中
– mulhsu：将两个乘数分别作为带符号整数和无符号整数相乘后得

到的高32位乘积存入rd中
– 得到64位乘积需要两条连续的指令，其中一定有一条是mul指令，

实际执行时只有一条指令
– 两种乘法指令都不检测溢出, 而是直接把结果写入结果寄存器。由

软件根据结果寄存器的值自行判断和处理溢出

 除法指令: div ，divu，rem，remu
– div / rem：按带符号整数做除法，得到商 / 余数
– divu / remu：按无符号整数做除法，得到商 / 余数

ISA要素：
指令+数据
类型+寄存
器设计等



X86（IA32）指令集设计

C\C++\Python语言的语法设计

采用RISC-V指令集架构的
笔记本电脑ROMA

大量个人计算机

X86（IA32）芯片（CPU） RISCV芯片（CPU）

RISCV指令集设计

各种语言相应的、适用于
X86（IA32）的编译器

各种语言相应的、适
用于RISCV的编译器



符合X86（IA32）指令集的
机器指令序列

C\C++\Python语言编制的程序

CPU负责周而复始的执行指令

符合RISCV指令集的
机器指令序列

各种语言相应的、适用于
X86（IA32）的编译器

各种语言相应的、适
用于RISCV的编译器

CPU负责周而复始的执行指令



指令集设计

计算机硬件

各种语言相应的编译器

硬件设计者角度：指令系统为CPU提
供功能需求，要求易于硬件设计

系统程序员角度：通过系统来使
用硬件，要求易于编写编译器

指令集体系结构（ISA）核心部分是指令
系统，还包含数据类型和数据格式定义
、寄存器设计、I/O空间的编址和数据传
输方式等等

冯.诺依曼结构机器对指令规定：
由两部分组成：操作码（做什么事）
和操作数或其地址码（对什么数据做）
和数据一样，是二进制且放在主存中



符合某指令集的
机器指令序列

CPU负责周而复始的执行指令

指令

数据

内存（主存，实存）
物理地址

CPU

运 算 部 件
指令

数据

硬盘

…

…

读

写

寄存器组(+PC)

取指令，译码，取数，
运算，存数…
周而复始

程序
1

程序
2

程序
3

异常和中断

PC



第一讲 概述与指令系统设计

指令设计概述

操作数及其寻址方式

–立即 / 寄存器 / 寄存器间接 / 直接 / 间接 / 堆栈 / 偏移

操作类型和操作码编码

–定长编码法、变长扩展编码法

标志信息的生成与使用

指令设计风格

异常和中断处理机制

主 要 内 容



从指令执行周期看指令设计涉及的问题

Instruction
Fetch取指令

Instruction
Decode译码

Operand
Fetch取数

Execute执行

Result
Store存数

Next下一步

Instruction

从存储器取指令

对指令译码，以确定将要做什么操作

计算操作数地址并取操作数

进行相应计算，并得到标志位

将计算结果保存到目的地

计算下条指令地址（通常和取指令同时进行）

指令地址、指令长度（定长/变长）

指令格式、操作码编码、操作数类型

地址码、寻址方式、操作数格式和存放

操作类型、标志或条件码

结果数据位置（目的操作数）

下条指令地址（顺序 / 转移）

指令执行的
每一步都可
能发生异常
或中断，因
此，指令集
系统架构（
ISA）还需
要考虑异常
和中断机制



一条指令须包含的信息

一条指令必须明显或隐含包含的信息有哪些？

1 操作码：指定操作类型（对何种类型数据做何种操作）

 (操作码长度：固定／可变)

2 源操作数参照：一个或多个源操作数所在的地址

 (操作数来源：主(虚)存/寄存器/I/O端口/指令本身）

3 结果值参照：产生的结果存放何处（目的操作数）

 (结果地址：主(虚)存/寄存器/I/O端口)

4 下一条指令地址：下条指令存放何处

 (下条指令地址 ：主(虚)存)

    (正常情况隐含在PC中，改变顺序时由指令给出）

0000 00 10 001 1 0010 0100 0 000 0010 0000指令格式



 操作码的全部组成：操作码个数 / 种类 / 复杂度
       LD/ST/INC/BRN 四种指令已足够编制任何可计算程

序，但程序会很长
 数据类型：对哪几种数据类型完成操作
 指令格式：指令长度 / 地址码个数 / 各字段长度
 通用寄存器：个数 / 功能 / 长度
 寻址方式：操作数地址的指定方式
 下条指令的地址如何确定：顺序，PC+1；条件转移；无

条件转移；……
 异常和中断机制，包括存储保护方式等

与指令集设计相关的重要方面



指令格式的选择应遵循的几条基本原则
 应尽量短
 要有足够的操作码位数
 合理地选择地址字段的个数
 指令编码必须有唯一的解释，否则是不合法的指令
 指令字长应是字节的整数倍
 指令尽量规整

指令格式的设计

一般通过对操作码进行不同的编码来
定义不同的含义，操作码相同时，再
由功能码定义不同的含义



一条指令中应该有几个地址码字段？

零地址指令

 (1) 无需操作数 如：空操作／停机等

 (2) 所需操作数为默认的 如：堆栈／累加器等

 形式：

一地址指令

 其地址既是操作数的地址，也是结果的地址

 (1) 单目运算：如：取反／取负等

 (2) 双目运算：另一操作数为默认的 如：累加器等

 形式：

二地址指令（最常用）

 分别存放双目运算中两个操作数，并将其中一个地址作为结果的地址。

 形式：

三地址指令（RISC风格）

 分别作为双目运算中两个源操作数的地址和一个结果的地址。

 形式：

多地址指令

 用于成批数据处理的指令，如:向量 / 矩阵等运算的SIMD指令。

OP

OP A1

A2 A3OP A1

A1OP A2



操作数类型和存储方式

操作数是指令处理的对象，与高级语言数据类型对应，基本类型有哪些？
地址（指针）

被看成无符号整数，寄存器编号，也可参加运算以确定主(虚)存地址
数值数据

定点数(整数)：一般用二进制补码表示
浮点数(实数)：大多数机器采用IEEE754标准
十进制数：用NBCD码表示，压缩/非压缩（汇编程序设计时用）

位、位串、字符和字符串
 用来表示文本、声音和图像等

» 4 bits is a nibble（一个十六进制数字）
» 8 bits is a byte
» 16 bits is a half-word 
» 32 bits is a word

逻辑(布尔)数据
 按位操作（0-假／1-真） 寄存器或内存单元中

，也可以立即数的方
式直接出现在指令中

操作数存放在哪里？



IA-32 & RISC-V Data Type
 IA-32

– 基本类型：
» 字节、字(16位)、双字(32位)、四字(64位) 

– 整数：
» 16位、32位、64位三种2-补码表示的整数
» 18位压缩8421 BCD码表示的十进制整数

– 无符号整数（8、16或32位）
– 近指针：32位段内偏移（有效地址）
– 浮点数：IEEE 754（80位扩展精度浮点数寄存器）

 RISC-V
– 基本类型：

» 字节、半字(16位)、字(32位)、双字(64位) 
– 整数： 16位、32位、64位三种2-补码表示的整数
– 无符号整数：（16、32位）
– 浮点数：IEEE 754（32位/64位浮点数寄存器）



Addressing Modes（寻址方式）

 什么是“寻址方式”？
指令或操作数地址的指定方式。即：根据地址找到指令或操作数的方法。

 地址码编码由操作数的寻址方式决定
 地址码编码原则：

指令地址码尽量短
操作数存放位置灵活，空间应尽量大
地址计算过程尽量简单

 指令的寻址----简单
    正常：PC增值
    跳转 ( jump / branch / call / return )：同操作数的寻址
 操作数的寻址----复杂
     操作数来源：寄存器 / 外设端口 / 主(虚)存 / 栈顶
     操作数结构：位 / 字节 / 半字 / 字 / 双字 / 一维表 / 二维表 /…

通常寻址方式指“操作数的寻址方式”

为什么？
目标代码短，省空间
利于编译器优化产生高效代码
指令执行快



 寻址方式的确定
（1）没有专门的寻址方式位（由操作码确定寻址方式）

即：只要知道是什么指令，就知道去哪里找操作数。
（2）有专门的寻址方式位

即：指令中可以看出有多个操作数，但每个操作数去哪里找，还
需要指令中再专门记录有它们的寻址方式位。

 有效地址的含义
 操作数所在存储单元的地址
 可通过指令的寻址方式和地址码算出有效地址

 基本寻址方式
立即 / 直接 / 间接 / 寄存器 / 寄存器间接 / 偏移 / 栈

 基本寻址方式的算法及优缺点

Addressing Modes

存放在内存时才涉及到有
效地址的计算



基本寻址方式的算法和优缺点

方式 算法 主要优点 主要缺点

立即数 操作数=A      指令执行速度快 操作数幅值有限

直接 EA=A               有效地址计算简单 地址范围有限

间接     EA=(A)             有效地址范围大 多次存储器访问

寄存器直接 操作数=(R)     指令执行快，指令短 地址范围有限

寄存器间接 EA=(R)         地址范围大 额外存储器访问

偏移 EA=A+(R)        灵活 复杂

栈 EA=栈顶 指令短 应用有限

偏移方式：将直接方式和寄存器间接方式结合起来。
有：相对 / 基址 / 变址三种 （见后面几页！）

假设：A=地址字段值，R=寄存器编号，
           EA=有效地址， (X)=X中的内容

问题：以上各种寻址方式下，操作数在哪里？

OP R A …

指令(寄存器)中

内存中

内存中

寄存器中

内存中

内存中

内存中

操作数位置



寄存器直接寻址、直接寻址

R=3
存储器

操作数

寄存器堆

A=15OP ......

操作数

0
…
3

4
…

0

1
…

15

16
…



0

1
…

15

16
…0

…
3

4
…

寄存器间接寻址、间接寻址

存储器

操作数

寄存器堆

OP ......

15

15

R=3 A=1



偏移寻址方式

存储器

操作数

寄存器堆

+
A

OP

偏移寻址：EA=A+(R)   

——R可以明显给出，也可以隐含给出

——R可以为PC、基址寄存器B、变址寄存器 I

......
指令中给
出的地址
码A称为
形式地址

R=3 A=3

12

15

0
…
3

4
…



偏移寻址方式

 相对寻址

 指令地址码给出一个偏移量(带符号数)，基准地址R隐含由PC给出。

 即：EA=(PC)+A——相对于当前指令处位移量为A的单元

 可用来实现程序(公共子程序)的浮动 或 指定转移目标地址

 注意：当前PC的值可以是正在执行指令的地址或下条指令的地址

 基址寻址

 指令地址码给出一个偏移量，基准地址R明显或隐含由基址寄存器B给出
即：EA=(B)+A—— 相对于基址(B)处位移量为A的单元

 可用来实现多道程序重定位 或 过程调用中参数的访问

 变址寻址

 指令地址码给出一个基准地址，而偏移量(无符号数)R明显或隐含由变址
寄存器 I 给出。即：EA=(I)+A——相对于首址A处位移量为(I)的单元

 可为循环重复操作提供一种高效机制，如实现对线性表的方便操作



变址寻址实现线性表元素的存取

 自动变址

指令中的地址码A给定数组首址，
变址器I每次自动加/减数组元素的
长度x。

EA=( I )+A

      I=( I ) ± x

      例如，X86中的串操作指令

 对于“for (i=0;i<N;i++) ….”
，即地址从低→高增长：加

 对于“for (i=N-1;i>=0;i--) 
….”,即地址从高→低增长：减

 可提供对线性表的方便访问

若每个元素为一个字节，则 I=(I) ± 1

若每个元素为4个字节，则 I=(I) ± 4

A=100
变址器I

0

A[0]
A[1]
A[2]
A[3]

存储器

假定一维数组A从内存100号单元开始

按字节寻址



Instruction Format(指令格式)

 操作码的编码有两种方式
   - Fixed Length Opcodes (定长操作码法)
   - Expanding Opcodes (扩展操作码编法)
 instructions size

• 代码长度更重要时：采用变长指令字、变长操作码
• 性能更重要时：采用定长指令字、定长操作码

为什么？

变长指令字和变长操作码使机器代码更紧凑；

定长指令字和定长操作码便于快速访问和译码。

定长操作码，也可以是变长指令字

但变长操作码，一般不会是定长指令字



定长操作码编码 Fixed Length Opcodes 

基本思想

 指令的操作码部分采用固定长度的编码

 如：假设操作码固定为6位，则系统最多可表示64种指令

特点

 译码方便，但有信息冗余

举例
 IBM360/370采用:
 8位定长操作码，最多可有256条指令
 只提供了183条指令，有73种编码为冗余信息
 机器字长32位，按字节编址
 有16个32位通用寄存器，基址器B和变址器X可用其中任意一个
 问题：通用寄存器编号有几位？B和X的编号占几位？ 都是4位！



IBM370指令格式

8 8 4 12 4 12
第1个半字 第2个半字 第3个半字

RR型 OP R1 R2

RX型 OP R1 X

RS型 OP R1 R3

SI型 OP I

SS型 OP

B D

B D

B D

L B1 D1 B2 D2

Ri：寄存器

X：变址器

Bi：基址器

Di：位移量

I：立即数

L：数的长度

RR：寄存器 - 寄存器 SS：基址存储器 - 基址存储器

RX：寄存器 - 变址存储器 SI：基址存储器 - 立即数

RS：寄存器 – 基址存储器 格式：定长操作码、变长指令字



扩展（变长）操作码编码 Expanding Opcodes

基本思想

 将操作码的编码长度分成几种固定长的格式。被很多指令集采用。

 PDP-11是典型的变长操作码机器。

种类

 等长扩展法：4-8-12；3-6-9；…... / 不等长扩展法

举例说明如何扩展

 设某指令系统指令字是16位，每个地址码为6位。若二地址指令15条，
一地址指令34条，则剩下零地址指令最多有多少条？

 解:操作码按短到长进行扩展编码

 二地址指令: (0000 ～ 1110) 

 一地址指令: 11110 (00000 ～ 11111); 11111 (00000 ～ 00001) 

 零地址指令: 11111 (00010 ～ 11111) (000000 ～ 111111)

 故零地址指令最多有 30x26=15x27 种



下一条指令去哪里找——顺序 or 条件测试方式

ex: sub r1, r2, r3   ;r2和r3相减, 结果在r1中，并生成标志位ZF、CF等
        bz label ;标志位ZF=1时转到label处执行；否则顺序执行

正常情况隐含在PC中——顺序执行

改变顺序时由指令给出

（1）指令中显式给出“下条指令地址”

（2）条件转移指令:通常根据Condition Codes (条件码
CC/ 状态位 / 标志位)转移 ：执行算术指令或显式比较
指令来设置CC

label: 指令中的地址码
——可长可短
——据此计算目标指令地址
——可有多种计算方式

001011 0011……1100示例：



条件测试方式（续）

°  标志可存在：标志寄存器/条件码寄存器

                                           /状态寄存器/程序状态字寄存器

也可由指定的通用寄存器来存放状态位

 Ex: cmp r1, r2, r3    ;比较r2和r3, 标志位存储在r1中

  bgt r1, label       ;判断r1是否大于0，是则转移到label处

常用的标志（条件码）有四种（怎么生成？参考之前ppt）
      SF – negative   OF – overflow        CF – 进位/借位 ZF – zero     

对于带符号和无符号整数加减运算，标志生成方式有没有不同？

没有，因为加法电路不知道是无符号整数还是带符号整数。

不同处理器对标志位的处理不同

000011 00001 0011……1100示例：



IA-32中的条件转移指令

分三类：

(1)根据单个
标志的值
转移

(2)按无符号
整数比较
转移

(3)按带符号
整数比较
转移



指令设计风格 -- 按操作数位置指定风格来分

Accumulator: (earliest machines) 累加器型

其中一个操作数和目的操作数总在累加器中

 
Stack: (e.g. HP calculator, Java virtual machines) 栈型

总是将栈顶两个操作数进行运算，指令无需指定操作数地址

 
General Purpose Register: (e.g. IA-32) 通用寄存器型

操作数可以是寄存器或存储器数据

 
Load/Store: (e.g. SPARC, MIPS, RISC-V) 装入/存储型

运算操作数只能是寄存器数据，只有load/store能访问存储器



比较

思考：指令长度？指令条数？指令执行效率？

°
表达式 C = A + B  可以怎么实现：

Stack Accumulator Register Register 
(register- memory) (load - store)

Push A Load  A Load  R1,A Load  R1,A
Push B Add   B Add   R1,B Load  R2,B
Add Store C Store C, R1 Add   R3,R1,R2
Pop  C Store C,R3

复杂表达式时，累加器型风格指令条数变多，因为所有运算都要用累加
器，使得程序中多出许多移入 / 移出累加器的指令！

75年开始，寄存器型占主导地位

• 寄存器速度快，使用大量通用寄存器可减少访存操作

• 表达式编译时与顺序无关（相对于Stack）

指令条数较少



指令设计风格 – 按指令格式的复杂度来分

早期CISC设计风格的主要特点

 (1) 指令系统复杂

 变长操作码 / 变长指令字 / 指令多 / 寻址方式多 / 指令格式多

 (2) 指令周期长

 绝大多数指令需要多个时钟周期才能完成

 (3) 各种指令都能访问存储器

 除了专门的存储器读写指令外，运算指令也能访问存储器

 (4) 采用微程序控制

 (5) 有专用寄存器

 (6) 难以进行编译优化来生成高效目标代码

例如，VAX-11/780小型机

16种寻址方式；9种数据格式；303条指令；

一条指令包括1～2个字节的操作码和下续N个操作数说明符。

一个说明符的长度达1 ～10个字节。

按指令格式的复杂度来分，有两种类型计算机：

复杂指令集计算机CISC (Complex Instruction Set Computer)
精简指令集计算机RISC (Reduce Instruction Set Computer)



复杂指令集计算机CISC

 对CISC进行测试，发现一个事实：

– 在程序中各种指令出现的频率悬殊很大，最常使用的是一些简单

指令，这些指令占程序的80%，但只占指令系统的20%。而且在

微程序控制的计算机中，占指令总数20%的复杂指令占用了控制

存储器容量的80%。

 1982年美国加州伯克利大学的RISC-I，斯坦福大学的MIPS，IBM公

司的IBM801相继宣告完成，这些机器被称为第一代RISC机。

 CISC的缺陷

– 日趋庞大的指令系统不但使计算机的研制周期变长，而且难以保证

设计的正确性，难以调试和维护，并且因指令操作复杂而增加机器

周期，从而降低了系统性能。

 1975年IBM公司开始研究指令系统的合理性问题，John Cocks提出精

简指令系统计算机 RISC ( Reduce Instruction Set Computer )。

SKIP



Top 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%
° Simple instructions dominate instruction frequency

( 简单指令占主要部分，使用频率高！) BACK



RISC设计风格的主要特点

 (1) 简化的指令系统

 指令少 / 寻址方式少 / 指令格式少 / 指令长度一致

 (2) 以RR方式工作

 除Load/Store指令可访问存储器外，其余指令都只访问寄存器。

 (3) 指令周期短

 以流水线方式工作， 因而除Load/Store指令外，其他简单指令都只

需一个或一个不到的时钟周期就可完成。

 (4) 采用大量通用寄存器，以减少访存次数

 (5) 采用组合逻辑电路控制，不用或少用微程序控制

 (6)  采用优化的编译系统，力求有效地支持高级语言程序

MIPS、RISC(RISC-I到RISC-V）系列架构是典型的RISC处理器，82年以
来新的指令集大多采用RISC体系结构

x86因为“兼容”的需要，保留了CISC的风格，同时也借鉴了RISC思想

Load/store型机器指令一般都是隐含寻址方
式（不需要专门的寻址方式位）

一般RISC机器不提供自动变址寻址，并将变
址和基址寻址统一成一种偏移寻址方式



Examples of Register Usage

每条典型ALU指令中的存储器地址个数

每条典型ALU指令中的最多操作数个数

Examples

0 3 SPARC, MIPS, Precision Architecture, Power PC，RISC-V
1 2 Intel 80x86, Motorola 68000
2 2 VAX (also has 3-operand formats)
3 3 VAX (also has 2-operand formats)

In VAX(CISC): ADDL (R9), (R10), (R11)
   ；mem[R9] ←mem[R10] + mem[R11]
In MIPS(RISC):

                             lw   R1, (R10)    ： R1 ← mem[R10] 
  lw   R2, (R11)       ：R2 ← mem[R11] 
  add  R3, R1, R2 ：R3 ← R1+R2
  sw  R3, (R9)    ：mem[R9] ← R3

一条指令！

四条指令！

哪一种风格更好呢？学了CPU设计之后会有更深的体会！



异常和中断

 程序执行过程中CPU会遇到一些特殊情况，使正在执行的程序被“中断”

– CPU中止原来正在执行的程序，转到处理异常情况或特殊事件的程序去执行，
结束后再返回到原被中止的程序处（断点）继续执行。

 程序执行被 “中断” 的事件有两类

– 内部“异常”：在CPU内部发生的意外事件或特殊事件

按发生原因分为硬故障中断和程序性中断两类

硬故障中断：如电源掉电、硬件线路故障等

程序性中断：执行某条指令时发生的“例外(Exception)”事件，如
溢出、缺页、越界、越权、越级、非法指令、除数为0、堆/栈溢出
、访问超时、断点设置、单步、系统调用等

– 外部“中断”：在CPU外部发生的特殊事件，通过“中断请求”信号向CPU请
求处理。如实时钟、控制台、打印机缺纸、外设准备好、采样计时到、DMA
传输结束等。



异常和中断的处理

 发生异常(exception)和中断(interrupt)事件后——

（不包括硬故障）

用户程序 操作系统

响应异常/中断
具体的异常
或中断处理
程序的指令• 返回当前指令

• 返回下条指令
• 终止(abort)

当前指令
下条指令



指令系统举例: Address & Registers

Intel 8086

VAX 11

MC 68000

MIPS32

2     x 8 bit bytes
AX, BX, CX, DX
SP, BP, SI, DI
CS, SS, DS
IP, Flags

2    x 8 bit bytes
16 x 32 bit GPRs

2    x 8 bit bytes
8 x 32 bit GPRs
7 x 32 bit addr reg
1 x 32 bit SP
1 x 32 bit PC

2    x 8 bit bytes
32 x 32 bit GPRs
32 x 32 bit FPRs
HI, LO, PC

acc, index, count, quot
stack, stack frame, string
code,stack,data segment

r15-- program counter
r14-- stack pointer
r13-- frame pointer
r12-- argument pointer

32

32

24

20

Flags：状态标志寄存器

GPR：通用寄存器堆

指令系统举例:

HI和LO是MIPS内部
的乘商寄存器



MIPS32的指令格式

 有三种指令格式

– R-Type
两个操作数和结果都在寄存器的运算指令。如：sub rd, rs, rt

– I-Type
• 运算指令：一个寄存器、一个立即数。如：ori  rt, rs, imm16
• LOAD和STORE指令。如：lw rt, rs, imm16
• 条件分支指令。如：beq rs, rt, imm16

– J-Type
无条件跳转指令。如：j  target

op rs rt rd shamt func
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

R-Type指令

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

I-Type指令

op target address
02631

6 bits 26 bits

J-Type指令

 32个通用寄存器，所有指令都是32位宽，须按字地址对齐

    字地址为4的倍数！

指令系统举例: ld/st型、RISC型



指令前缀 段前缀 操作数长度 地址长度

 0或1 0或1  0或1  0或1

前缀类型：

字节数：

指令系统举例：IA-32的指令格式

前缀：包括指令、段、操作数长度、地址长度四种类型

指令：含操作码、寻址方式、SIB、位移量和直接数据五部分，位移量和立即数都可
是1/2/4B。SIB中基址B和变址I都可是8个GRS中任一个。SS给出比例因子。操作码：
opcode; w：与机器模式（16 / 32位）一起确定寄存器位数（AL / AX / EAX）; d：操
作方向；寻址方式： mod、r/m、 reg/op三个字段与w字段和机器模式一起确定操作
数所在的寄存器编号或有效地址计算方式

变长指令字：1B~17B
变长操作码：4b / 5b / 6b / 7b / 8b /……
变长操作数：Byte / Word / DW / QW
变长寄存器：8位 / 16位 /32位

ALU指令中的一个操作数可来自存储器

通用寄存器型、
CISC型



第一讲小结（重要）

 一个计算机系统中需要定义多条指令

 指令的功能/含义由操作码(或加上某些功能字段)来决定

 每条指令中的二进制位具体怎么使用呢？

–操作码+地址码+可能需要的其它附加字段

–在一条指令中可以有0-N个地址码

–指令的设计离不开寄存器的设计（数量、功能等必须预先确定）

–一个机器中所有指令的长度可相同，也可各不相同

 需要多少种操作码呢？

–由所需的功能（运算，控制等）来决定

 需要处理哪些数据类型呢？

–也由所需运算类型来决定

 如何完成指令中对操作数的存取要求呢（核心功能）？

–寻址方式可以有多种，灵活使用

 如何控制“周而复始的执行指令”呢？

–隐式的自动按顺序取

–显式的在指令中给出“下条指令地址”

–条件测试后计算出“转移目标地址”



第一讲小结

 操作类型

– 传送 / 算术 / 逻辑 / 移位 / 字符串 / 转移控制 / 调用 / 中断 / 信号同步

 操作数类型

– 整数（带符号、无符号、十进制）、浮点数、位、位串

 地址码的编码要考虑：

– 操作数的个数

– 寻址方式：立即 / 寄存器 / 寄间 / 直接 / 间接 / 相对 / 基址 / 变址 / 堆栈

 操作码的编码要考虑：

– 定长操作码 / 扩展操作码

 条件码的生成

– 四种基本标志：NF（SF） /  VF（OF） /  CF  /  ZF
 指令设计风格：

– 按操作数地址指定方式来分：

» 累加器型 、通用寄存器型、load/store型、栈型

– 按指令格式的复杂度来分

» 复杂指令集计算机CISC、精简指令集计算机RISC
 典型指令系统举例

– 以下将详细介绍RISC-V指令系统



第7章 指令系统

第1讲 概述与指令系统设计

第2讲 指令系统实例：RISC-V架构



第二讲指令系统实例：RISC-V

主要内容

RISC-V指令系统概述

RISC-V指令参考卡和指令格式

RISC-V基础整数指令集

–整数运算

–控制转移

–存储访问

–系统控制

RISC-V可选的扩展指令集



RISC-V指令系统概述

 设计目标

–广泛的适应性：从最袖珍的嵌入式微控制器，到最快的高性能计算机

–支持各种异构处理架构，成为定制加速器的基础

–稳定的基础指令集架构，并能灵活扩展，且扩展时不影响基础部分

 开源理念和设计原则

–本着“指令集应自由（Instruction Set Want to be Free）”的理念，
指令集完全公开，且无需为指令集付费

–由一个非盈利性质的基金会管理，以保持指令集稳定，加快生态建设

–2020年基金会总部从美国迁到中立国瑞士，坚持开放自由、坚持为全世
界服务的理念，被卡脖子的情况大大减少

–与以前的增量ISA不同，遵循“大道至简”的设计哲学，采用模块化设计
，既保持基础指令集的稳定，也保证扩展指令集的灵活配置

–特点：具有模块化结构，稳定性和可扩展性好，在简洁性、实现成本、
功耗、性能和程序代码量等各方面具有显著优势



RISC-V的模块化结构

– 核心：RV32I 
– 标准扩展集：RV32M、RV32F、RV32D、RV32A 

– 32位架构RV32G = RV32IMAFD
» 其压缩指令集RV32C（指令长度16位）

– 64位架构RV64G = RV64IMAFD
» 其压缩指令集RV64C（指令长度16位）

– 向量计算RV32V和RV64V；
– 嵌入式RV32E（RV32I的子集，16个通用寄存器）

指令长度
机器字长
通用寄存器长度
定点运算器
处理数据的长度

同一条指令在RV64I和RV32I中都存在时，其具体行为也是不一样的



指令参考卡①

 核心指令集

：基础整数

指令集

RV32I 和
RV64I

 特权指令：

（参考教材

pp196）
 伪指令举例-

增加汇编程序

可读性

 压缩指令集

：RV32C和

RV64C



 扩展指令集

乘除运算指令集

RVM、原子操作

指令集RVA、浮

点运算指令集

RVF和RVD、向

量操作指令集

RVV

 通用寄存器的

调用约定

32个定点通用寄

存器x0~x31；32
个浮点寄存器

f0~f31；

指令参考卡②



定点通用寄存器的功能定义和两种汇编表示 

寄存器 ABI 名 功能描述 被调用过程保存？ 

x0 

x1 

x2 

x3 

x4 

x5 

x6~x7 

x8 

x9 

x10~x11 

x12~x17 

x18~x27 

x28~x31 

zero 

ra 

sp 

gp 

tp 

t0 

t1~t2 

s0/fp 

s1 

a0~a1 

a2~a7 

s2~s11 

t3~t6 

硬编码 0 

返回地址 

栈指针 

全局指针 

线程指针 

临时寄存器 

临时寄存器 

保存寄存器/帧指针 

保存寄存器 

过程参数/返回值 

过程参数 

保存寄存器 

临时寄存器 

— 

否 

是 

— 

— 

否 

否 

是 

是 

否 

否 

是 

否 
 



 共有6种指令格式
R-型为寄存器操作数指令

I-型为短立即数或装入（Load）指令

S-型为存储（Store）指令

B-型为条件跳转指令

U-型为长立即数操作指令

J-型为无条件跳转指令

指令长度为32位的RISC-V指令格式

 opcode：7位操作码字段

 rd、rs1和rs2：通用寄存器编号

 imm：立即数，其位数在括号[ ]
中表示

 funct3和funct7：分别表示3位
功能码和7位功能码，和opcode
字段一起定义指令的操作功能



 共有8种指令格式。与32位指令相比，16位指令中的一部分寄存器编号
还是占5位。指令变短了，但还是32位架构，处理的还是32位数据，还
是有32个通用寄存器。

 为了缩短指令长度，操作码op、功能码funct、立即数imm和另一部分
寄存器编号的位数都减少了。

 每条16位指令都有功能完全相同的32位指令，在执行时由硬件先转换为
32位指令再执行。目的是：缩短程序代码量，用少量时间换空间！

指令长度为16位的RISC-V压缩指令格式



 包含：

– 移位（Shifts）

– 算术运算（Arithmetic）

– 逻辑运算（Logical）

– 比较（Compare）

– 分支（Branch）

– 跳转链接（Jump & Link）

– 同步（Synch）

– 环境（Environment）

– 控制状态寄存器（Control 
Status Register）

– 取数（Load）

– 存数（Store）

RISC-V基础整数指令集（RV32I）

整数运算
类指令

控制转移
类指令

存储访问类指令

系统控制
类指令

RTL规定：
R[r]：通用寄存器r的内容
M[addr]：存储单元addr的
内容
M[R[r]]：寄存器r的内容所
指存储单元的内容
PC：PC的内容
M[PC]：PC所指存储单元的
内容
SEXT[imm]：对imm进行
符号扩展
ZEXT[imm]：对imm进行
零扩展
传送方向用←表示，即传送
源在右，传送目的在左

Register Transfer Language



整
数
运
算
类
指
令

RISC-V基础整数指令集（RV32I）



U型指令共2条

RISC-V基础整数指令集（RV32I）

lui rd, imm20：将立即数imm20存到rd寄存器高20位，低12位为0。该指令
和“addi rd, rs1, imm12”结合，可以实现对一个32位变量赋初值。

举例：请给出C语句“int x=-8191;”对应的RISC-V机器级代码（就是编译）

解：对应的RISC-V机器指令和汇编指令为：

1111 1111 1111 1111 1110 00101 0110111 lui x5, 1048574 #R[x5]←FFFFE000H(-8192)

0000 0000 0001 00101 000 00101 0010011 addi x5, x5, 1 #R[x5]←R[x5]+SEXT[001H]

-8191的机器数为：1111 1111 1111 1111 1110 0000 0000 0001

SEXT表示符号扩展

auipc rd, imm20：将立即数imm20加到PC（32位）的高20位上，结果存rd

可用指令“auipc x10, 0”获取当前PC的内容，存入寄存器x10中。

寻址方式？

立即
寄存器直接



I 型指令共9条，其中三条为用立即数指定所移位数的移位指令

RISC-V基础整数指令集（RV32I）

操作码opcode：都是0010011，其功能由funct3指定，而当funct3=101
时，再有高7位区分是算术右移（srai）还是逻辑右移（srli）。

imm[11:0]：12位立即数，符号扩展为32位，作为第2个源操作数，和
R[rs1]（寄存器rs1中的内容）进行运算，结果存rd。
shamt：指出移位位数，因为最多移31位，故用5位即可。无算术左移指令



RISC-V基础整数指令集（RV32I）

举例：请给出C语句“int x=8191;”对应的RISC-V机器级代码。

0000 0000 0000 0000 0001 00101 0110111  lui x5, 1 #R[x5]← 0000 1000H  （4096）

1111 1111 1111 00101 000 00101 0010011  addi x5, x5,-1#R[x5]←R[x5]+SEXT[FFFH]

解：8191的机器数为：0000 0000 0000 0000 0001 1111 1111 1111

“lui rd, imm20” 和“addi rd, rs1, imm12”结合。如下，对不对？

不对！因为低12位中第一位为1，addi按符号扩展相加！结果为4095。
【注意：机器指令 转换成 汇编形式时，都是按该指令的设计规定来完成的】

可利用addi符号扩展特性进行调整！因为 imm12范围为-2048~2047，故可用lui
先装入一个距离目标常数小于2048的数，再通过 addi 进行 加 或 减（imm12为
负时）来调整！

这里 8191=8192-1，故可先装入8192，再用 addi 减1 （加全1）！

0000 0000 0000 0000 0010 00101 0110111  lui x5, 2  #R[x5]← 0000 2000H  （8192）

1111 1111 1111 00101 000 00101 0010011  addi x5, x5,-1 #R[x5]←R[x5]+SEXT[FFFH]



RISC-V基础整数指令集（RV32I）

操作码opcode：都是0110011，其功能由funct3指定，而当funct3=000、
101时，再由funct7区分是加（add）还是减（sub）、逻辑右移（srl）还是
算术右移（sra）。

rs1、rs2、rd：5位通用寄存编号，共32个；两个源操作数分别在rs1和rs2寄
存器中，结果存rd。

sll：逻辑左移指令，无算术左移指令。因逻辑左移和算术左移结果完全相同

R型指令共10条



RISC-V基础整数指令集（RV32I）

4条比较指令：带符号小于（slt、slti）、无符号小于（sltu、sltiu）

例如，“sltiu rd, rs1, imm12”功能为：将rs1内容与imm12符号扩展结果
按无符号整数比较，若小于，则1存入rd中；否则，0存入rd中。



RISC-V基础整数指令集（RV32I）
举例：假定变量x、y和z都是long long型，占64位，
x的高、低32位分别存放在寄存器x13、x12中；
y的高、低32位分别存放在寄存器x15、x14中；
z的高、低32位分别存放在寄存器x11、x10中

解：可通过sltu指令将低32位的进位加入到高32位中。

0000000 01110 01100 000 01010 0110011 add x10,x12,x14 #R[x10]←R[x12]+R[x14]

0000000 01100 01010 011 01011 0110011 sltu x11,x10,x12 #若R[x10]<R[x12]，则

                                                                        #  R[x11]←1（若和比加数小，则一定有进位）

0000000 01111 01101 000 10000 0110011 add x16,x13,x15 #R[x16]←R[x13]+R[x15]

0000000 10000 01011 000 01011 0110011 add x11,x11,x16 #R[x11]←R[x11]+R[x16]

使用了临时寄存器x16

请写出C语句
“z=x+y;”对应的
32位字长RISC-V机
器级代码。

低32位不涉及符号位，所以使用sltu。用add和addu都可以。
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RISC-V基础整数指令集（RV32I）

J 型：jal 功能为: PC←PC+SEXT[imm[20:1]<<1]；R[rd]←PC+4

jal x1/rd/,imm实现过程调用； jal x0/rd/,imm 实现无条件跳转。

I 型：jalr功能为: PC←R[rs1]+SEXT[imm[12]]；R[rd]←PC+4

         指令“jalr x0/rd/,x1/rs1/,0”可实现过程调用的返回。

B型：皆为分支指令，其中，bltu、bgeu分别为无符号数比较小于、大于等

         于转移。转移目标地址=PC+SEXT[imm[12:1]<<1]

<<1: 指令地址总是2的倍数（RV32G、RV32C指令分别为4、2字节长）



RISC-V基础整数指令集（RV32I）

举例：若int型变量x、y、z分别存放在寄存器x5、x6、x7中，写出C语句
“z=x+y;”对应的RISC-V机器级代码，要求检测是否溢出。

解：当x、y为int类型时，若“y<0且x+y≥x”或者 “y≥0且x+y<x”，则
x+y溢出。可通过slti指令对y与0进行比较。

0000000 00110 00101 000 00111 0110011 add x7,x5,x6 #R[x7]←R[x5]+R[x6]

0000 0000 0000 00110 010 11100 0010011 slti x28,x6,0 #若R[x6]<0，则R[x28]←1

0000000 00101 00111 010 11101 0110011 slt x29,x7,x5 #若R[x7]<R[x5] 则R[x29]←1

0000010 11101 11100 001 10000 1100011 bne x28,x29,overflew #若R[x28]≠R[x29] 

  ……                                                                                                      #则转溢出处理

overflew:  xxxxxxxx （某指令）

 bne这条指令的二进制编码是怎么确定的？



RISC-V基础整数指令集（RV32I）

0000010 11101 11100 001 10000 1100011 bne x28,x29,overflew #若R[x28]≠R[x29] 

  ……                                                                                                      #则转溢出处理

overflew:  xxxxxxxx （某指令）

      bne：

假定标号为overflew的指令地址与“bne x28…”这条指令地址相距80字节，
则“bne x28….”指令中的偏移量应为80，
因此，指令中的立即数为40     ——     40=0000 0010 1000B，

按照B-型格式对立即数重组，
所以，该指令的机器码为“0000010 11101 11100 001 10000 1100011”
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RISC-V基础整数指令集（RV32I）

I 型：5条取数（Load）指令。功能: R[rd]←M[R[rs1]+SEXT[imm[12]]

lbu、lhu：分别为无符号字节、半字取，取出数据按0扩展为32位，装入rd

S型：3条存数（Store）指令。功能: M[R[rs1]+SEXT[imm[12]]←R[rs2]

sb、sh: 分别将rs2寄存器中低8、低16位写入存储单元中。 

汇编形式如： lw rd, imm12(rs1),   sw rs2, imm12(rs1)
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RISC-V基础整数指令集（RV32I）

fence：RISC-V架构在不同硬件线程之间使用宽松一致性模型，fence和
fence.i 两条屏障指令，用于保证一定的存储访问顺序。

ecall和ebreak：陷阱（trap）指令，也称自陷指令，主要用于从用户程序
陷入到操作系统内核（ecall）或调试环境（ebreak）执行，因此也称为环境
（Environment）类指令。

csrxxx: 6条csr指令用于设置和读取相应的控制状态寄存器（CSR）。 



 标准扩展指令集

– RV32I基础指令集之上，可标准扩展RV32M、RV32F/D、RV32A，以形成32位
架构合集RV32IMAFD，也称为RV32G

– RV32G基础上，对每个指令集进行调整和添加，可形成64位架构RV64G，原先

在RV32G中处理的数据将调整为64位。但为了支持32位数据操作，每个64位架

构指令集中都会添加少量32位数据处理指令。

 RISC-V扩展集包括

– 针对64位架构需要，在47条RV32I指令基础上，增加12条整数指令（+RV64I）
，包括6条32位移位指令、3条32位加减运算指令、两条64位装入（Load）指

令和1条64位存储（Store）指令，故RV64I共59条指令。

– 针对乘除运算需要，提供了32位架构乘除运算指令集RV32M中的8条指令，并

在此基础上增加了4条RV64M专用指令（+RV64M）

– 针对浮点数运算的需要，提供了32位架构的单精度浮点处理指令集RV32F和双

精度浮点处理指令集RV32D，并在此基础上分别增加了RV64F和RV64D专用指

令集（+RV64F）和（+RV64D）。

– 针对事务处理和操作原子性的需要，提供了32位架构原子操作指令集RV32A以

及RV64A专用指令集（+RV64A）。关于事务处理和原子性操作问题的说明可

参考第8章。

 向量处理指令集RVV、未来可选扩展指令集RVB、RVE、RVH、……

RISC-V可选的扩展指令集



64位架构指令举例

例：在64位RISC-V架构中，如何实现将一个32位常数

00000000 00111101 00000101 00000000装入64位寄存器a0中？

注：在64位架构中，lui指令和32位架构中类似。将一个常数的高20位装

入到64位寄存器中，具体规定如下

解： lui指令将常数中的第31~12位0000 0000 0011 1101 0000（976

）装入到a0寄存器的第31~12位，同时，a0寄存器的第11~0位为全0，

高32位按符号扩展（第31位为符号）为全0。

再将常数的低12位0101 0000 0000（对应十进制数1280）加到a0中。

因此，实现上述功能对应的汇编指令序列为：

lui a0, 976

addi a0, a0, 1280



回顾：RISC-V中整数的乘、除运算处理

 乘法指令: mul，mulh，mulhu，mulhsu

– mul rd, rs1, rs2：将低32位乘积存入结果寄存器rd

– Mulh：将两个乘数同时按带符号整数相乘，高32位乘积存入rd中

– mulhu：将两个乘数同时按无符号整数相乘，高32位乘积存入rd中

– mulhsu：将两个乘数分别作为带符和无符整数相乘，高32位乘积存入rd

– 得到64位乘积需要两条连续的指令，其中一定有一条是mul指令，硬件实
际执行时其实只是执行了一条指令

– 两种乘法指令都不检测溢出, 而是直接把结果写入结果寄存器。由软件根据
结果寄存器的值自行判断和处理溢出

 除法指令: div ，divu，rem，remu

– div / rem：按带符号整数做除法，得到商 / 余数

– divu / remu：按无符号整数做除法，得到商 / 余数

 RISC-V指令不检测和发出异常（除0），而是由系统软件自行处理

 乘法指令（硬件）也可以生成溢出标志，只是RISCV没有这样做。



进一步思考（续第6章内容，请按需回顾）

在字长为32位的计算机上，某C函数原型声明为：int imul_overflow(int x, 
int y);   该函数用于对两个int型变量x和y的乘积（也是int类型）判断是否溢
出，若溢出则返回非0，否则返回0。请完成下列任务或回答下列问题。

（2）已知入口参数x、y分别在寄存器a0、a1中，返回值在a0中，写出实现
         imul_overflow函数功能的RISC-V汇编指令序列，并给出注解。（编
         译器中判断溢出的代码）

 可以根据高位乘积寄存器和低位乘积寄存器的内容来进行溢出判断（编
译器可以生成相关的判断指令，由指令计算并存放溢出标志）

实现该功能的汇编指令序列不唯一，可能如下——
mul  t0, a0, a1        # x*y的低32位在t0中
mulh  a0, a0, a1        # x*y的高32位在a0中
srai   t0, t0, 31        # 乘积的低32位算术右移31位
xor  a0, a0, t0        # 按位异或，若结果为0，表示不溢出
（本处按题意，返回值写入a0，而不是写入溢出标志位）



进一步思考：除法结果的处理

• RISC-V指令不检测和发出异常，而是由系统软件自行处理
如除法错， 不触发异常，而用特殊的商和余数来表示

若整数x除以0，则指令执行结果为：商为全1，余数为x。

当最小的负整数除以-1时，会发生结果溢出，此时，相应指令执行
结果为：商为被除数（即最小负整数），余数为0。

这样做的好处是：简化流水线的硬件实现

若编译器对除法错进行处理，可查看商和余数来判断

若编译器不处理除法错，则程序就得到错误结果，这种情况下需要
程序员进行相应处理



 指令格式

– 定长指令字：所有指令长度一致

– 变长指令字：指令长度有长有短

 操作类型

– 数据传送：数据在寄存器、主存单元、栈顶等处进行传送

– 操作运算：各种算术运算、逻辑运算

– 字符串处理：字符串查找、扫描、转换等

– I/O操作： 与外设接口进行数据/状态/命令信息的交换

– 程序流控制：条件转移、无条件转移、转子、返回等

– 系统控制：启动、停止、陷阱指令（自愿访管）、空操作等

 操作数类型（以Pentium处理器数据类型为例）

– 序数或指针：8位、16位、32位无符号整数表示

– 整数：16位、32位、64位三种补码表示的整数

– 实数：IEEE754浮点数格式

– 十进制数：18位十进制数，用80个二进位表示

– 字符串：字节为单位的字符序列，一般用ASCII码表示

 操作数宽度：有多种，如：字节、16位、32位、64位等

本章总结1



 寻址方式

– 立即：地址码直接给出操作数本身

– 直接：地址码给出操作数所在的内存单元地址

– 间接：地址码给出操作数所在的内存单元地址所在的内存单元地址

– 寄存器：地址码给出操作数所在的寄存器编号

– 寄存器间接：地址码给出操作数所在单元的地址所在的寄存器编号

– 栈：操作数约定在栈中，总是从栈顶取数或存数

– 偏移寻址：用基地址+形式地址得到操作数所在的内存单元地址

 指令系统：决定了处理器的设计
– 按地址码指定风格来分

累加器型：一个操作数和结果都隐含在累加器中
堆栈型：操作数和结果都隐含在堆栈中
通用寄存器型：操作数明显地指定在哪个通用寄存器中
装入/存储型：运算类指令的操作数只能在寄存器中，只有装入(Load)指令
和存储(Store)指令才能访问内存

– 按指令系统的复杂度来分
CISC：复杂指令系统计算机
RISC：精简指令系统计算机

本章总结2
作业：习题2(4)、2(9)、3、6、7、8、10
、11、13、15、17。5.12晚上24点截止


